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Abstract

This paper presents a full-wave spectral-domain anal-

ysis to investigate compensation of a variety of microstrip

dkcontinuities including bends and T junctions. To prop-

erly model the dlscontinuities with miters as well as 90°

corners, vector-valued triangular sub domain functions are

used as both expansion and testing functions in the moment

method procedure. Special consideration is given to the nu-

merical treatment of the reaction integral between two trian-

gular subdomains such that rather complicated geometrical

configurations can be handled very efficiently. Comparison

of some numerical results with available experimental data

shows excellent agreement. The losses due to radiation and

surface waves in some discontinuities will also be discussed

in the presentation.

I. INTRODUCTION

In the design of microwave and millimeter wave cir-

cuits, compensation of microstrip discontinuities is widely

used to reduce the effects of discontinuity reactance [I]. For

low frequency applications, quasi-static analysis has been

successfully applied to compensation of some dkcontinuities

such as steps, right-angle bends and T junctions [2]-[3]. At

Klgher frequencies, a dynamic model based on a full-wave

analysis is required to take into account more physical effects

such as radiation and surface-wave losses. The most rigorous

full-wave method for the characterization of open microstrip

discontinuities is governed by the well-known electric field

integral equation (EFIE), which can be formulated in both

the space domain and spectral domain. In the space domain,

the dyadlc kernel in the EFIE is the Green’s function for the

electric field which can be obtained from a Sommerfeld-type

integral. Since the kernel is highly singular, the! evaluation

of the reaction integrals in the moment methocl procedure
is dhlicult when the observation point is within the integra-

tion range. The spectral-domain analysis performs an inte-

gral transformation, usually Fourier or Hankel transforms, to
transform a partial differential equation into an ordinary dif-

ferential equation. After satisfying the boundary conditions

at the interfaces of multi-layer stratified dielectric medium,

this approach can lead to a closed-form expression for the so
called spectral-domain dyadlc Green’s function. The space-

domain electromagnetic fields can be further expressed by

taking the inverse Fourier transform of the vector product

B-3

of this spectral-domain dyadic Green’s function and Fourier
transform of the microstrip currents. Such an EFIE formula-
tion in the spectral-domain has several advantages over the

space-domain method including a better behaved integrand

in the reaction integral and easier calculation for both rw

diation and surface-wave losses. Hence, one can compute

the impedance matrix in the moment of moments very accu-

rately such that the circuit parameters in a microstrip junc-

tion can be rigorously determined.

A review of past work using full-wave spectral-domain

analysis for open microstrip discontinuities reveals that the

technique developed up to now is limited to a multi-port

junction whose shape can be divided into a number of rect-

angles. The most commonly used expansion functions, pulse
and piecewise sinusoidal functions, are appropriate e only for

modeling a discontinuity with 90° corners. To model the

discontinuities with miters at any angle, vector-valued tri-

angular subdomain functions are adopted in this analysis as

both expansion and testing functions in the moment method

procedure. These triangular subdomain functions were ap-

parently first employed by Rae, Wilton and Glisson [4]. They

are suitable for modeling electric currents on arbitrary PEC

surfaces. However, the present application will restrict the

surface patches to lie in the plane of discontinuities. Since
a spectral-domain approach is employed in the characteriza-

tion of microstrip discontinuities, the Fourier transform of
the triangular subdomain function has to be derived. This

results in a very complicated mathematical expression. Cru-

cial to the numerical formulation is the efficient computa-

tion of the reaction integrals associated with these triangu-

lar subdomains to avoid tremendous CPU time. An efficient

method to improve CPU time is to employ a space-domain

technique for the asymptotic solution of the spectral-domain

reaction integral [5].

II. SPECTRAL-DOMAIN MATRIX
FORMULATION

A. Electric Field Integral Equation

Consider a microstrip structure where the current

distribution over the microstrip discontinuities is treated in
terms of a number of infinitesimal dipoles continuously dis-

tributed on the interface between the dielectric and the air.

From linear superposition, the tangential electric field on
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the interface can be expressed by a two-dimensional spa-

tial convolution of the dyadic Green’s function with the cur-

rent distribution. Each component of this two-dimensional

spatial convolution corresponds to multiplication of the two-

dimensional Fourier transforms in the spectral domain. There-

fore, the space-domain tangential electric field can be ex-

pressed again as an inverse Fourier transform of the vec-

tor product of spectral-domain dyadic Green’s function and

the Fourier transform of the microstrip currents. With the
boundary condition that such field is zero on the perfectly

conducting microstrips, an electric field integral equation can

be set up:

#zSe-jbUdk=dkv = O, for Z, y on microstrips (1)

=
where G and ~ are the spectral-domain dyadic Green’s func-

tion and the current distribution respectively. The spectral-

domain dyadic Green’s function which can be derived in

closed form takes into account all the physical phenomena

including radiation and surface waves.

B. ‘IMangular Subdomain Functions

The triangular subdomain functions as shown in Fig, 1

are vector-valued functions defined as

{

*(Z – Z3, y – y3), x,y in Tp+

J%, Y)= *A-(~x4— x,$14 – Y), x,y in Tp- (2)

0, p otherwise

where Tp+ and Tp- denote the faces of two triangles with ar-
eas A$ and A; respectively. Fig. 1 also shows a microstrip
discontinuity of arbitrary shape on a substrate with permit-

tivity e and substrate thickness h. This discontinuity is in-

scribed with non-overlapping triangles defined in terms of an

appropriate set of vertices, faces, interior edges and bound-
.

ary edges. The pth expansion function (fp) is uniquely asso-

ciated with a pair of adjacent triangles with an jointed edge

(interior edge) whose length is lP, The current on microstrip

can be expanded as

... ... ... . . ....$ : . . . . . . . .
: . .,l:.....;...:;{;, ; . . . . .. . . . . . ......++..! , .... . . . . .. ... . . .f,:.. +
; . .::+:.:.:.:... <...:~:.,y..:..”::j,;:j,;: ::..:+.”.”:..:,:: :::.:+.,:.... . .. . . .: +.:.: :...: . .,.$t;>e:,l::::.;,,,*ggt=

‘k’”edge
Fig. 1. IR4angular sub domain function

where N is the total number of the interior edges and 1P

are unknown coefficients to be obtained through the method

of moments. Each basis function has two salient proper-

ties which can make it uniquely suited to approximate elec-

tric surface currents on microstrip discontinuities of arbitrarv .
shape [4] :

● The current has no component normal to the boundary

edge.
● The component of current normal to the pth interior edge

is constant and continuous across the edge,

The triangular subdomain function basically consists of a

pair of linearly varying functions with triangular support

whose Fourier transform can be found in [6]. After arrange-

ment, the Fourier transform of ~~(z, y) can be easily derived.

The Fourier transform is defined as

C. Galerkin’s Procedure

After substituting the expanded current expression
(3) and the Fourier transforms of expansion functions (4)
into (1), the met hod of moments can be applied to convert

this integral equation into a matrix equation, The testing

functions in the moment method procedure are also cho~

sen to be triangular sub domain functions, As a result, the

matrix equation for a microstrip discontinuity is generally

formulated as

V’livxhr[ml’= [VN . (5)

Each matrix element in [Z] represents the reaction between

two basis functions. The computation of each element re-

quires a double infinite integration in the spectral domain:

(6)
where the superscript * represents the complex conjugate of

the function. In (5), the right-hand side matrix represents

an excitation mechanism for-the microstrip junction: In this

analysis, an ideal delta-gap voltage source is used to excite

the junction.

111. NUMERICAL EVALUATION OF MATRIX

ELEMENTS

After transforming into polar coordinates, the double
infinite integration in (6) is carried out numerically. We re-

duce the integration to a finite integral (O to 27r) with respect

to an angular variable O = tan-l ~ and an infinite integral

(O to m) with respect to a radial variable A = ,/~.

For the finite integral, since the integrand is smo~t~ly b~-

haved over the angular domain, a 16 to 48 Gaussian quadra-

ture formula is used depending on the distance between the

expansion and testing functions. For the infinite integral,
the integrand containing the Fourier transforms of triangu-
lar subdomain expansion and testing functions is mathemat-
ically complex and converges slowly, Solutions to impedance

matrix elements take approximately 4 times the CPU time
when compared to the integrand using pulse or piecewise si-
nusoidal functions in modeling the discontinuities with 90°
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corners. An efficient method to perform the integration is to

apply an asymptotic extraction technique. Thk technique

breaks the double infinite integral into two integrals. One

is the asymptotic integral (denoted by_Z&n) where the lead-

ing term of asymptotic expansion of ?$ as A ~ m is used

in the integrand, The other is the difference integral (de-
noted by Z$m) where subtraction of thk leading term from
.

~ is used in the integrand. After a slight arrangement, it is—

found that the leading term of asymptotic expansion of ~ is

asymptotically equivalent to the dyadic Green’s function in—

a homogeneous medium (denoted by G~) with the. dielectric

constant equal to the average of the dielectric constants im-

mediately above and below the source points. As a result,

both integrals can be mathematically expressed as follows.

Zmn= Z;n+ Z:n (7)

where

and

With this technique, fast convergence forthedifference ;n:

tegral can reobtained. It is observed that the convergence

of the integral in (9) is improved by the order of AZ when

compared to the integral in (6).

In this analysis, both asymptotic and difference inte-

gralsare calculated veryefficiently. The asymptotic integral

in (8) represents themutual impedance between the expan-

sion function ~~ and the testing function ~~ in an infinite

homogeneous medium. We evaluated thk integral in the

space domain by employing a numerical method similar to

that used by Rao et al [4]. For the difference integral, the

infinite integration range in (9) with respect to A can be

truncated within (O, A) due to the fast convergence. A must
= =

be chosen large enough to satisfy G cx Gh as A >* A, which

can result from

and @=” A (lo)

tanh Ah s coth Ah N 1. (11)

From (10) and (11), it can be concluded that the determina-

tion of A depends on dielectric constant and electric thick-

ness of the substrate. For larger dielectric constant or elec-
trically thicker substrates, A can be chosen smaller to cause

less numerical expense in evaluation of the difference inte-

gral. Moreover, the integrand in (9) contains all the singular-
ities, namely the surface wave poles, over the J domain. One

way of performing the integration from O to A is to deform

the contour oil the real axis and apply the Cauchy Rlemann
theorem such that the integrand is well behaved [7]. This

method is particularly useful in a multi-layered structure be-

cause knowledge of individual pole locations is not required.

The evaluation of the difference integral can be considered as

the key contribution from the multi-layered structure to each

impedance matrix element. It includes the surface-wave re-

sistance and part of the radiation resist ante in each element.

Although the spectral-domain difference integral has been

reduced to a double finite one with well-behaved integrand,

we may further reduce CPU time by employing some special

numerical schemes developed in the spectral domain. These

schemes will be introduced in the presentation.

IV. NUMERICAL RESULTS AND DISCUSSION

A. An Open-End Discontinuity

To demonstrate the numerical accuracy of this anal-

ysis, the phase term of the reflection coefficient calculated

from an open end has been compared with the measure-

ments in [8] and theoretical results in [10]. Fig. 2 shows the

comparisons and it is seen that the difference among these
three curves is less than 1° over the frequency range of the

measurement.

>..
~..lo -
g

4-20:
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s — This theory
A -30: ----

---- Theory in [10]

-40 1,, ,,1, ,,,1, ,,,1, ,,,1, ~,,1, ,,,1~ ,,,1,,,,1~,,,1,,,,1,,,,

24681012141618202224 26
Frequency (GHz)

Fig. 2. Phase of S parameters of an open-end.

(e=9.9,w=24mil, h=25mil)

B. Bend and T-Junction Discontinuities

The improvements provided by geometrical modifi-
cation to the outer portion of the right-angle bend with a

45° miter (shown in Fig. 3) are investigated, Fig. 4 shows

the normalized susceptance for both right-angle and mitered
bend discontinuities as a function of frequency. As expected,
the mitered bend has a smaller susceptance than the right-

angle bend over a wide frequency range of int crest, Com-

parison of numerical results with measurements in [9] shows

excellent agreement,

~ right-angle bend ~ basic T

5%I-vr#-t#-t
Fig. 3. Compensation of microstrip dk.continuities.
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For compensation of discontinuity reactance of a ba-

sic T junction, the removal of a 45° isosceles triangle is con-

sidered, Both discontinuities, basic and mitered T junctions,

are shown in Fig, 3. The magnitude of scattering parameters

for both discontinuities is shown in Fig. 5, where the compar-
ison with the measured results in [10] for the case of basic

T junction shows excellent agreement, It is observed that

the improvements of a mitered T junction are pronounced

at higher frequencies, Fig, 6 shows the magnitude of elec-

tric surface currents which result from a full-wave moment

method solution on a mitered T junction at the frequency of
24 GHz.
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Fig. 4, Normalized susceptance of right-angle and mitered

bend discontinuities. (e=10.8,w=4.572mm,h=5 .08mm)
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Fig. 5, Magnitude of S parameters of basic and

mitered T junctions. (.s=9.9, w=24mil, h=25mil)

V. CONCLUSIONS

The full-wave spectral-domain analysis combined with
the method of moments using triangular subdomain func-

tions has been found to be a very accurate method to analyze

compensation of microstrip discontinuities. Several examples

including open-end, right-angle bend, mitered bend, basic T
and mitered T junctions were investigated. The numerical

results were verified by comparison with available measured

data for most of the cases. The comparison showed excellent

agreement,
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Fig. 6. Magnitude of electric surface currents on
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