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Abstract

This paper presents a full-wave spectral-domain anal-
ysis to investigate compensation of a variety of microstrip
discontinuities including bends and T junctions. To prop-
erly model the discontinuities with miters as well as 90°
corners, vector-valued triangular subdomain functions are
used as both expansion and testing functions in the moment
method procedure. Special consideration is given to the nu-
merical treatment of the reaction integral between two trian-
gular subdomains such that rather complicated geometrical
configurations can be handled very efficiently. Comparison
of some numerical results with available experimental data
shows excellent agreement. The losses due to radiation and
surface waves in some discontinuities will also be discussed
in the presentation.

I. INTRODUCTION

In the design of microwave and millimeter wave cir-
cuits, compensation of microstrip discontinuities is widely
used to reduce the effects of discontinuity reactances [1]. For
low frequency applications, quasi-static analysis has been
successfully applied to compensation of some discontinuities
such as steps, right-angle bends and T junctions {2]-[3], At
higher frequencies, a dynamic model based on a full-wave
analysis is required to take into account more physical effects
such as radiation and surface-wave losses. The most rigorous
full-wave method for the characterization of open microstrip
discontinuities is governed by the well-known electric field
integral equation (EFIE), which can be formulated in both
the space domain and spectral domain. In the space domain,
the dyadic kernel in the EFIE is the Green’s function for the
electric field which can be obtained from a Sommerfeld-type
integral. Since the kernel is highly singular, the evaluation
of the reaction integrals in the moment method procedure
is difficult when the observation point is within the integra-
tion range. The spectral-domain analysis performs an inte-
gral transformation, usually Fourier or Hankel transforms, to
transform a partial differential equation into an ordinary dif-
ferential equation. After satisfying the boundary conditions
at the interfaces of multi-layer stratified dielectric medium,
this approach can lead to a closed-form expression for the so
called spectral-domain dyadic Green’s function. The space-
domain electromagnetic fields can be further expressed by
taking the inverse Fourier transform of the vector product
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of this spectral-domain dyadic Green’s function and Fourier
transform of the microstrip currents. Such an EFIE formula-
tion in the spectral-domain has several advantages over the
space-domain method including a better behaved integrand
in the reaction integral and easier calculation for both ra-
diation and surface-wave losses. Hence, one can compute
the impedance matrix in the moment of moments very accu-
rately such that the circuit parameters in a microstrip junc-
tion can be rigorously determined.

A review of past work using full-wave spectral-domain
analysis for open microstrip discontinuities reveals that the
technique developed up to now is limited to a multi-port
junction whose shape can be divided into a number of rect-
angles. The most commonly used expansion functions, pulse
and piecewise sinusoidal functions, are appropriate only for
modeling a discontinuity with 90° corners. To model the
discontinuities with miters at any angle, vector-valued tri-
angular subdomain functions are adopted in this analysis as
both expansion and testing functions in the moment method
procedure. These triangular subdomain functions were ap-
parently first employed by Rao, Wilton and Glisson [4]. They
are suitable for modeling electric currents on arbitrary PEC
surfaces, However, the present application will restrict the
surface patches to lie in the plane of discontinuities. Since
a spectral-domain approach is employed in the characteriza-
tion of microstrip discontinuities, the Fourier transform of
the triangular subdomain function has to be derived. This
results in a very complicated mathematical expression. Cru-
cial to the numerical formulation is the efficient computa-
tion of the reaction integrals associated with these triangu-
lar subdomains to avoid tremendous CPU time. An efficient
method to improve CPU time is to employ a space-domain
technique for the asymptotic solution of the spectral-domain
reaction integral [5].

II. SPECTRAL-DOMAIN MATRIX
FORMULATION

A. Electric Field Integral Equation

Consider a microstrip structure where the current
distribution over the microstrip discontinuities is treated in
terms of a number of infinitesimal dipoles continuously dis-
tributed on the interface between the dielectric and the air.
From linear superposition, the tangential electric field on
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the interface can be expressed by a two-dimensional spa-
tial convolution of the dyadic Green’s function with the cur-
rent distribution. Each component of this two-dimensional
spatial convolution corresponds to multiplication of the two-
dimensional Fourier transforms in the spectral domain. There-
fore, the space-domain tangential electric fleld can be ex-
pressed again as an inverse Fourier transform of the vec-
tor product of spectral-domain dyadic Green’s function and
the Fourier transform of the microstrip currents. With the
boundary condition that such field is zero on the perfectly
conducting microstrips, an electric field integral equation can
be set up:
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where G and J are the spectral-domain dyadic Green’s func-
tion and the current distribution respectively. The spectral-
domain dyadic Green’s function which can be derived in
closed form takes into account all the physical phenomena
including radiation and surface waves.

B. Triangular Subdomain Functions

The triangular subdomain functions as shown in Fig, 1
are vector-valued functions defined as
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where T} and T, denote the faces of two triangles with ar-
eas A} and A7 respectively. Fig. 1 also shows a microstrip
discontinuity of arbitrary shape on a substrate with permit-
tivity € and substrate thickness k. This discontinuity is in-
scribed with non-overlapping triangles defined in terms of an
appropriate set of vertices, faces, interior edges and bound-
ary edges. The p** expansion function ( f;) is uniquely asso-
ciated with a pair of adjacent triangles with an jointed edge
(interior edge) whose length is I,. The current on microstrip
can be expanded as

N
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boundary edge

Fig. 1. Triangular subdomain function

108

where N is the total number of the interior edges and I,
are unknown coeflicients to be obtained through the method
of moments. Each basis function has two salient proper-
ties which can make it uniquely suited to approximate elec-
tric surface currents on microstrip discontinuities of arbitrary
shape [4] :

¢ The current has no component normal to the boundary
edge.

¢ The component of current normal to the p* interior edge
is constant and continuous across the edge.

The triangular subdomain function basically consists of a
pair of linearly varying functions with triangular support
whose Fourler transform can be found in [6]. After arrange-
ment, the Fourier transform of f;,(z, ¥) can be easily derived.
The Fourier transform is defined as
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C. Galerkin’s Procedure

After substituting the expanded current expression
(3) and the Fourier transforms of expansion functions (4)
into (1), the method of moments can be applied to convert
this integral equation into a matrix equation. The testing
functions in the moment method procedure are also cho-
sen to be triangular subdomain functions. As a result, the
matrix equation for a microstrip discontinuity is generally

formulated as
[Zlnvxn Uy = [Vy- )

Each matrix element in [Z] represents the reaction between
two basis functions. The computation of each element re-
quires a double infinite integration in the spectral domain:

Zon = g3 [ [ (B ) - Foll )] T )k,
©)

where the superscript * represents the complex conjugate of
the function. In (5), the right-hand side matrix represents
an excitation mechanism for the microstrip junction. In this
analysis, an ideal delta-gap voltage source is used to excite
the junction.

III. NUMERICAL EVALUATION OF MATRIX
ELEMENTS

After transforming into polar coordinates, the double
infinite integration in (6) is carried out numerically. We re-
duce the integration to a finite integral (0 to 27) with respect
to an angular variable § = tan—! % and an infinite integral

(0 to o) with respect to a radial variable A = ,/k2 + k2.
For the finite integral, since the integrand is smoothly be-
haved over the angular domain, a 16 to 48 Gaussian quadra-
ture formula is used depending on the distance between the
expansion and testing functions. For the infinite integral,
the integrand containing the Fourier transforms of triangu-
lar subdomain expansion and testing functions is mathemat-
ically complex and converges slowly. Solutions to impedance
matrix elements take approximately 4 times the CPU time
when compared to the integrand using pulse or piecewise si-
nusoidal functions in modeling the discontinuities with 90°



corners. An efficient method to perform the integration is to
apply an asymptotic extraction technique. This technique
breaks the double infinite integral into two integrals. One
is the asymptotic integral (denoted by Z2, ) where the lead-

ing term of asymptotic expansion of G as A — oo is used
in the integrand. The other is the difference integral (de-
noted by Z3,,) where subtraction of this leading term from

G is used in the integrand. After a slight arrangement, it is

found that the leading term of asymptotic expansion of Gis
asymptotically equivalent to the dyadic Green’s function in

a homogeneous medium (denoted by _C?;,) with the dielectric
constant equal to the average of the dielectric constants im-
mediately above and below the source points. As a result,
both integrals can be mathematically expressed as follows.

Zpn = Zpn + ngn (7)
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00 PN [ - P
Zo= [ [B000) F0n0)] - P 0raer ®)

and

zi.= [ 2"[(‘5@,9) — G0 0) - O o)] F. 00, 0)7d6d.

9
With this technique, fast convergence for the difference En2
tegral can be obtained. It is observed that the convergence
of the integral in (9) is improved by the order of A? when
compared to the integral in(6).

In this analysis, both asymptotic and difference inte-
grals are calculated very efficiently. The asymptotic integral
in (8) represents the mutual impedance between the expan-
sion function f, and the testing function f,, in an infinite
homogeneous medium. We evaluated this integral in the
space domain by employing a numerical method similar to
that used by Rao et al [4]. For the difference integral, the
infinite integration range in (9) with respect to A can be
truncated within (0, A) due to the fast convergence. A must

be chosen large enough to satisfy G ~ G4 as A > A, which
can result from
Al — e~ A (10)

tanh Ak ~ coth Ah ~ 1. (1)

From (10) and (11), it can be concluded that the determina-
tion of A depends on dielectric constant and electric thick-
ness of the substrate. For larger dielectric constant or elec-
trically thicker substrates, A can be chosen smaller to cause
less numerical expense in evaluation of the difference inte-
gral. Moreover, the integrand in (9) contains all the singular-
ities, namely the surface wave poles, over the A domain. One
way of performing the integration from 0 to A is to deform
the contour off the real axis and apply the Cauchy Riemann
theorem such that the integrand is well behaved [7]. This
method is particularly useful in a multi-layered structure be-
cause knowledge of individual pole locations is not required.
The evaluation of the difference integral can be considered as
the key contribution from the multi-layered structure to each
impedance matrix element. It includes the surface-wave re-
sistance and part of the radiation resistance in each element.

and
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Although the spectral-domain difference integral has been
reduced to a double finite one with well-behaved integrand,
we may further reduce CPU time by employing some special
numerical schemes developed in the spectral domain. These
schemes will be introduced in the presentation.

IV. NUMERICAL RESULTS AND DISCUSSION

A. An Open-End Discontinuity

To demonstrate the numerical accuracy of this anal-
ysis, the phase term of the reflection coefficient calculated
from an open end has been compared with the measure-
ments in [8] and theoretical results in [10]. Fig. 2 shows the
comparisons and it is seen that the difference among these
three curves is less than 1° over the frequency range of the
measurement.
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Fig, 2. Phase of S parameters of an open-end.
(e=9.9,w=24mil, h=25mil)

B. Bend and T-Junction Discontinuities

The improvements provided by geometrical modifi-
cation to the outer portion of the right-angle bend with a
45° miter (shown in Fig. 3) are investigated. Fig. 4 shows
the normalized susceptance for both right-angle and mitered
bend discontinuities as a function of frequency. As expected,
the mitered bend has a smaller susceptance than the right-
angle bend over a wide frequency range of interest. Com-
parison of numerical results with measurements in [9] shows
excellent agreement.
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Fig. 3. Compensation of microstrip discontinuities.



For compensation of discontinuity reactances of a ba-
sic T junction, the removal of a 45° isosceles triangle is con-
sidered. Both discontinuities, basic and mitered T junctions,
are shown in Fig. 3. The magnitude of scattering parameters
for both discontinuities is shown in Fig. 5, where the compar-
ison with the measured results in [10] for the case of basic
T junction shows excellent agreement. It is observed that
the improvements of a mitered T junction are pronounced
at higher frequencies. Fig. 6 shows the magnitude of elec-
tric surface currents which result from a full-wave moment
method solution on a mitered T junction at the frequency of
24 GHz.
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Fig. 4. Normalized susceptance of right-angle and mitered
bend discontinuities. (e=10.8,w=4.572mm h=>5.08mm)
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Fig. 5. Magnitude of S parameters of basic and
mitered T junctions. (e=9.9, w=24mil, h=25mil)

V. CONCLUSIONS

The full-wave spectral-domain analysis combined with
the method of moments using triangular subdomain func-
tions has been found to be a very accurate method to analyze
compensation of microstrip discontinuities. Several examples
including open-end, right-angle bend, mitered bend, basic T
and mitered T junctions were investigated. The numerical
results were verified by comparison with available measured
data for most of the cases. The comparison showed excellent
agreement,.
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Fig. 6. Magnitude of electric surface currents on
a mitered T junction.
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